References
[1] C. Frank, S. Dimitry, S. Sugrib, and C. Daolun, “Development of High Temperature Aluminum Alloys for Automotive Powertrain,” Adv. Mater. Process., vol. 174, no. March, pp. 17–20, 2016.
[2] J. Rakhmonov, G. Timelli, and F. Bonollo, “The Effect of Transition Elements on High-Temperature Mechanical Properties of Al–Si Foundry Alloys–A Review,” Adv. Eng. Mater., vol. 18, no. 7, pp. 1096–1105, 2016, doi: 10.1002/adem.201500468.
[3] S. K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D. L. Chen, “Microstructure and mechanical properties of Al-Si cast alloy with additions of Zr-V-Ti,” Mater. Des., vol. 83, pp. 801–812, 2015, doi: 10.1016/j.matdes.2015.05.057.
[4] M. Zamani, L. Morini, L. Ceschini, and S. Seifeddine, “The role of transition metal additions on the ambient and elevated temperature properties of Al-Si alloys,” Mater. Sci. Eng. A, vol. 693, no. January, pp. 42–50, 2017, doi: 10.1016/j.msea.2017.03.084.
[5] Q. Zhang, Z. Zuo, and J. Liu, “High-temperature low-cycle fatigue behaviour of a cast Al-12Si-CuNiMg alloy,” Fatigue Fract. Eng. Mater. Struct., vol. 36, no. 7, pp. 623–630, 2012, doi: 10.1111/ffe.12029.
[6] F. M. Mbuya, T. O, Odera, B. O., Ng’ang’a, S. P., and Oduori, “Effective recycling of cast aluminium alloys for small foundries,” J. Agric. Sci. Technol., vol. 12, no. 2, pp. 162–181, 2010.
[7] W. Kasprzak, B. S. Amirkhiz, and M. Niewczas, “Structure and properties of cast Al-Si based alloy with Zr-V-Ti additions and its evaluation of high temperature performance,” J. Alloys Compd., vol. 595, pp. 67–79, 2014, doi: 10.1016/j.jallcom.2013.11.209.
[8] M. Javidani and D. Larouche, “Application of cast Al–Si alloys in internal combustion engine components,” Int. Mater. Rev., vol. 59, no. 3, 2014, doi: 10.1179/1743280413Y.0000000027.
[9] Y. C. Tzeng, C. T. Wu, C. H. Yang, and S. L. Lee, “Effects of trace Be and Sc addition on the thermal stability of Al-7Si-0.6Mg alloys,” Mater. Sci. Eng. A, vol. 614, pp. 54–61, 2014, doi: 10.1016/j.msea.2014.07.013.
[10] S. K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D. L. Chen, “Monotonic and cyclic deformation behavior of the Al-Si-Cu-Mg cast alloy with micro-additions of Ti, V and Zr,” Int. J. Fatigue, vol. 70, pp. 383–394, 2015, doi: 10.1016/j.ijfatigue.2014.08.001.
[11] H. A. Elhadari, H. A. Patel, D. L. Chen, and W. Kasprzak, “Tensile and fatigue properties of a cast aluminum alloy with Ti, Zr and V additions,” Mater. Sci. Eng. A, vol. 528, no. 28, pp. 8128–8138, 2011, doi: 10.1016/j.msea.2011.07.018.
[12] W. Kasprzak, D. Emadi, M. Sahoo, and M. Aniolek, “Development of Aluminium Alloys for High Temperature Applications in Diesel Engines,” Mater. Sci. Forum, vol. 618–619, no. April, pp. 595–600, 2009, doi: 10.4028/www.scientific.net/MSF.618-619.595.
[13] C. Jeong, “High Temperature Mechanical Properties of Al-Si-Mg-(Cu) Alloys for Automotive Cylinder Heads,” Mater. Trans., vol. 54, no. 4, pp. 588–594, 2013, doi: 10.2320/matertrans.M2012285.
[14] K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Criteria for developing castable, creep-resistant aluminum-based alloys - A review,” International Journal of Materials Research, vol. 97, no. 3. pp. 246–265, Mar. 2006, doi: 10.3139/146.101249.
[15] S. K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D. L. Chen, “Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 46, no. 7, pp. 3063–3078, Jul. 2015, doi: 10.1007/s11661-015-2880-x.
[16] M. Rahimian, S. Amirkhanlou, P. Blake, and S. Ji, “Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys,” Mater. Sci. Eng. A, vol. 721, no. February, pp. 328–338, 2018, doi: 10.1016/j.msea.2018.02.060.
[17] J. Hernandez-Sandoval, G. H. Garza-Elizondo, A. M. Samuel, S. Valtiierra, and F. H. Samuel, “The ambient and high temperature deformation behavior of Al-Si-Cu-Mg alloy with minor Ti, Zr, Ni additions,” Mater. Des., vol. 58, pp. 89–101, Jun. 2014, doi: 10.1016/j.matdes.2014.01.041.
[18] E. Kilinc, N. Kiremitci, Y. Birol, and E. Dokumaci, “Effect of Vanadium and Zirconium Additions on Mechanical Properties and Microstructure of Gravity Die-Cast AlSi9Cu2 Alloy Cylinder Heads,” Int. J. Met., pp. 1–9, Jun. 2018, doi: 10.1007/s40962-018-0238-z.
[19] S. K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D. L. Chen, “Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 47, no. 5, pp. 2396–2409, May 2016, doi: 10.1007/s11661-016-3365-2.
[20] B. S. Murty, S. A. Kori, and M. Chakraborty, “Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying,” Int. Mater. Rev., vol. 47, no. 1, pp. 3–29, Feb. 2003, doi: 10.1179/095066001225001049.
[21] Y. Meng, J. Cui, Z. Zhao, and Y. Zuo, “Effect of vanadium on the microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr-Ti alloy of 6XXX series,” J. Alloys Compd., vol. 573, pp. 102–111, Oct. 2013, doi: 10.1016/j.jallcom.2013.03.239.
[22] S. Wang, Y. Liu, H. Peng, X. Lu, J. Wang, and X. Su, “Microstructure and Mechanical Properties of Al–12.6Si Eutectic Alloy Modified with Al–5Ti Master Alloy,” Adv. Eng. Mater., vol. 19, no. 12, pp. 1–5, 2017, doi: 10.1002/adem.201700495.
[23] D. G. Mallapur, K. R. Udupa, and S. A. Kori, “Influence of Grain Refiner and Modifier on the Microstructure and Mechanical Properties of a356 Alloy,” Int. J. Eng. Sci. Technol., vol. 2, no. 9, pp. 4487–4493, 2010.
[24] B. Baradarani and R. Raiszadeh, “Precipitation hardening of cast Zr-containing A356 aluminium alloy,” Mater. Des., vol. 32, no. 2, pp. 935–940, 2011, doi: 10.1016/j.matdes.2010.08.006.
[25] R. Mahmudi, P. Sepehrband, and H. M. Ghasemi, “Improved properties of A319 aluminum casting alloy modified with Zr,” Mater. Lett., vol. 60, no. 21–22, pp. 2606–2610, Sep. 2006, doi: 10.1016/j.matlet.2006.01.046.
[26] S. K. Das, “Designing Aluminium Alloys for a Recycling Friendly World,” in Materials Science Forum, 2006, vol. 519–521, pp. 1239–1244, doi: 10.4028/www.scientific.net/MSF.519-521.1239.
[27] ASTM B 557M - 02a, “Standard test methods of tension testing wrought and cast aluminum and magnesium alloys products ASTM B557-10,” Stand. test methods Tens. Test. wrought cast aluminum-and magnesium-alloy Prod., vol. 02, pp. 1–15, 2010, doi: 10.1520/B0557-10.2.
[28] S. K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D. L. Chen, “Effect of Cr, Ti, V, and Zr Micro-additions on Microstructure and Mechanical Properties of the Al-Si-Cu-Mg Cast Alloy,” Metall. Mater. Trans. A Phys. Metall. Mater. Sci., vol. 47, no. 5, pp. 2396–2409, May 2016, doi: 10.1007/s11661-016-3365-2.