References
[1]. Zou, H., Sun, H., & Ji, K. (2012, December). Real-time infrared pedestrian detection via
sparse representation. In Computer Vision in Remote Sensing (CVRS), 2012 International
Conference on (pp. 195-198). IEEE.
[2]. Wang, J. T., Chen, D. B., Chen, H. Y., & Yang, J. Y. (2012). On pedestrian detection and
tracking in infrared videos. Pattern Recognition Letters, 33(6), 775-785.
[3]. Teutsch, M., & Muller, T. (2013, May). Hot spot detection and classification in LWIR
videos for person recognition. In SPIE Defense, Security, and Sensing (pp. 87440F87440F). International Society for Optics and Photonics.
[4]. Elguebaly, T., & Bouguila, N. (2013). Finite asymmetric generalized Gaussian mixture
models learning for infrared object detection. Computer Vision and Image Understanding,
117(12), 1659-1671.
[5]. Teutsch, M., Muller, T., Huber, M., & Beyerer, J. (2014). Low resolution person detection
with a moving thermal infrared camera by hot spot classification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 209-216).
[6]. M. R. Amini, M. Moghadasi, and I. Fatehi, "A BFSK Neural Network Demodulator with
Fast Training Hints," in 2010 Second International Conference on Communication
Software and Networks, 2010, pp. 578-582.
[7]. Soundrapandiyan, R., & Mouli, P. C. (2015). Adaptive Pedestrian Detection in Infrared
Images Using Background Subtraction and Local Thresholding. Procedia Computer
Science, 58, 706-713.
[8]. Rajkumar, S., & Mouli, P. C. (2015, February). Pedestrian detection in infrared images
using local thresholding. In Electronics and Communication Systems (ICECS), 2015 2nd
International Conference on (pp. 259-263). IEEE.
[9]. M. R. Amini and E. Balarastaghi, "Improving ann bfsk demodulator performance with
training data sequence sent by transmitter," presented at the Machine Learning and
Computing (ICMLC), 2010 Second International Conference on, Bangalore, India, 2010.
[10]. M. Amini, M. Mahdavi, and M. J. Omidi, "Energy Efficiency Optimization of Secondary
Network Considering Primary User Return with Alternating-Phase-Type Traffic," IEEE
Transactions on Communications, vol. PP, pp. 1-1, 2017Paw?owski, P., Piniarski, K., &
D?browski, A. (2015, September). Pedestrian detection in low resolution night vision
images. In Signal Processing: Algorithms, Architectures, Arrangements, and Applications
(SPA), 2015 (pp. 185-190). IEEE.
[11]. Yang, C., Liu, H., Liao, S., & Wang, S. (2015). Pedestrian Detection in Thermal Infrared
Image Using Extreme Learning Machine. In Proceedings of ELM-2014 Volume 2 (pp. 31-
40). Springer International Publishing.
[12]. Zhao, X., He, Z., Zhang, S., & Liang, D. (2015). Robust pedestrian detection in thermal
infrared imagery using a shape distribution histogram feature and modified sparse
representation classification. Pattern Recognition, 48(6), 1947-1960.
13. M. Amini and A. Mirzavandi, "Phase-Type Model Spectrum Sensing for Cognitive
Radios," IETE Journal of Research, vol. 61, pp. 1-7, 2015 2015.
[14]. Ma, Y., Wu, X., Yu, G., Xu, Y., & Wang, Y. (2016). Pedestrian Detection and Tracking
from Low-Resolution Unmanned Aerial Vehicle Thermal Imagery. Sensors, 16(4), 446.
[15]. Dai, C., Zheng, Y., & Li, X. (2007). Pedestrian detection and tracking in infrared imagery
using shape and appearance. Computer Vision and Image Understanding, 106(2), 288-299.
[16]. Biswas, S. K., & Milanfar, P. (2017). Linear support tensor machine with LSK channels:
Pedestrian detection in thermal infrared images. IEEE transactions on image processing,
26(9), 4229-4242.
[17]. Cai, Y., Liu, Z., Wang, H., & Sun, X. (2017). Saliency-based pedestrian detection in far
infrared images. IEEE Access, 5, 5013-5019.
[18]. Ma, M. (2019). Infrared pedestrian detection algorithm based on multimedia image
recombination and matrix restoration. Multimedia Tools and Applications, 1-16.
[19]. Kwak, J. Y., Ko, B. C., & Nam, J. Y. (2017). Pedestrian tracking using online boosted
random ferns learning in far-infrared imagery for safe driving at night. IEEE Transactions
on Intelligent Transportation Systems, 18(1), 69-81.
[20]. Bai, X., Wang, Y., Liu, H., & Guo, S. (2018). Symmetry information based fuzzy
clustering for infrared pedestrian segmentation. IEEE Transactions on Fuzzy Systems,
26(4), 1946-1959.
[21]. Shen, G., Zhu, L., Jihan, L. O. U., Shen, S., Liu, Z., & Tang, L. (2019). Infrared multipedestrian tracking in vertical view via Siamese Convolution Network (December 2018).
IEEE Access.
[22]. Lahmyed, R., El Ansari, M., & Ellahyani, A. (2018). A new thermal infrared and visible
spectrum images-based pedestrian detection system. Multimedia Tools and Applications, 1-
2.