References
[1].Pavlis, N.K., Holmes, S.A., Kenyon,
S.C. and Factor, J.K. (2008). An
Earth Gravitational Model to Degree
2160: EGM2008, Proceedings of the
2008 General Assembly of the
European Geosciences Union, 13-18,
Vienna, Austria.
[2].Pavlis, N.K., Holmes, S.A., Kenyon,
S.C. and Factor, J.K. (2012) The
Development and Evaluation
of the Earth Gravitational Model
2008 (EGM2008), Journal of
Geophysical Research: Solid Earth
(1978-2012), 117(B4): 4406.
http://earthinfo.nga.mil/GandG/wgs84/gravitym
od/egm2008/
[3].Andritsanos VD, Arabatzi O,
Gianniou M, Pagounis V, Tziavos
IN, Vergos GS, Zachris E (2015)
Comparison of Various GPS
Processing Solutions toward an
Efficient Validation of the Hellenic
Vertical Network: The ELEVATION
Project. J Surv Eng, doi:
10.1061/(ASCE)SU.1943-
5428.0000164, 04015007.
[4].Andritsanos V.D., Grigoriadis V.N.,
Natsiopoulos D.A., Vergos G.S.,
Gruber T., Fecher T. (2017) GOCE
Variance and Covariance
Contribution to Height System
Unification. In: International
Association of Geodesy Symposia.
Springer, Berlin, Heidelberg.
[5].Vergos G.S., Andritsanos V.D.,
Grigoriadis V.N., Pagounis V.,
Tziavos I.N. (2015) Evaluation of
GOCE/GRACE GGMs Over Attica
and Thessaloniki, Greece, and Wo
Determination for Height System
Unification. In: Jin S., Barzaghi R.
(eds) IGFS 2014. International
Association of Geodesy Symposia,
vol 144. Springer, Cham.
[6].Vergos, G.S., Erol, B., Natsiopoulos,
D.A. Preliminary results of GOCEbased
height system unification
between Greece and Turkey over
marine and land areas Acta Geod
Geophys (2018) 53: 61.
https://doi.org/10.1007/s40328-017-
0204-x.
[7].Soycan M. (2013) Analysis of
geostatistical surface model for gps
height transformation: a case study
in Izmir territory of
Turkey.702Geodetski vestnik 57/4.
[8].Vanicek, P., and A. Kleusberg
(1987). The Canadian geoid-
Stokesian approach. Manuscripta
Geodaetica 12, 86-98.
[9].Li Y. C., Sideris M.G. (1994).
Minimization and estimation of
geoid undulation errors. Bulletin
Geodesique 68:201-219
[10]. Toth, Gy., Rozsa, Sz.,
Andritsanos, V.D., Adam, J.,
Tziavos, I.N., (2000). Towards a
cm-Geoid for Hungary: Recent
Efforts and Results. Phys. Chem.
Earth (A), 25:1:47-52
[11]. Kuhtreiber N. (2002). High
Precision Geoid Determination of
Austria Using Heterogeneous Data.
International Association of
Geodesy. Section III - Determination
of the Gravity Field. 3rd Meeting of
the International Gravity and Geoid
Commission. Gravity and Geoid 2002 - GG2002. ed. I.N. Tziavos
(144-151)
[12]. Chen Y., Luo Z., Kwok S.
(2003). Precise Hong Kong Geoid
HKGEOID-2000. Journal of
Geospatial Engineering, Vol. 5, No.
2, pp. 35-41.
[13]. Soycan, M., (2006).
Determination of Geoid Heights by
GPS and Precise Trigonometric
Levelling. Survey Review 38-299,
387-396.
[14]. Abbak R.A., Sjoberg L.E.,
Ellmann A., Ustun A. (2012). A
precise gravimetric geoid model in a
mountainous area withscarce gravity
data: a case study in central Turkey.
Studia Geophysica et Geodaetica.
56- 4, 909-927.
[15]. Ollikainen M. (1997).
Determination Of Orthometric
Heights Using GPS Levelling
Publications of the Finnish Geodetic
Institute' KirkkonummI.
[16]. Kiamehr, R. and Sjoberg,
L.E. (2005). Comparison of the
qualities of recent global and local
gravimetric geoid model in Iran.
Studia Geophysica et Geodaetica,
49: 289-304.
[17]. Benahmed Dahoa, S.A.,
Kahlouchea, S., Fairhead, J.D.
(2006). A procedure for modeling
the differences between the
gravimetric geoid model and
GPS/leveling data with an example
in the north part of Algeria.
Computers & Geosciences 32, 1733-
1745.
[18]. Featherstone, W. E., Sproule,
D. M. (2006). Fitting Ausgeoid98 to
the Australian height datum using
GPS-leveling and least squares
collocation: application of a crossvalidation
technique. Survey Review
38-301, 574-582.
[19]. Kotsakis, C., Katsambalos,
K. (2010). Quality analysis of global
geopotential models at 1542
GPS/leveling benchmarks over the
Hellenic mainland. Survey Review
42-318, 327-344.
[20]. Erol, B., Erol, S., Celik, R. N.
(2008). Height transformation using
regional geoids and GPS/leveling in
Turkey, Survey Review, 40-307, 2-
18.
[21]. Soycan, M., Soycan A.,
(2003). Surface Modeling for GPSLeveling
Geoid Determination.
International Geoid Service 1-1, 41-
51.
[22]. Stopar B, Ambrozic T, Kuhar
M, Turk G (2000). Artificial neural
network collocation method for local
geoid height determination.Proc IAG
Int Sym Gravity, Geoid and
Geodynamics 2000, Banff, Canada,
CD-Rom
[23]. Kavzoglu T, Saka MH
(2005). Modelling Local
GPS/Levelling Geoid Undulations
Using Artificial Neural Networks, J.
Geodesy, 78: 520-527.
[24]. Kuhar M., Stopar B., Turk
G., Ambrozyicy T. (2001). The use
of artificial neural network in geoid
surface approximation. AVN 2001,
pp. 22-27.
[25]. Kutoglu HS (2006). Artificial
neural networks versus surface
polynomials for determination of
local geoid, 1st International Gravity
Symposium, Istanbul.
[26]. Kraus K. and Mikhail E.M.
(1972). Linear Least-Squares
Interpolation 12. Congress of the
International Society of
Photogrammetry, Ottawa, Canada,
July 23-August 5.
[27]. Miller C.L. and Laflamme R.
A. (1958). The Digital Terrain
Model Theory and Application,
Presented at the Society's 24. Annual
Meeting, Hotel Shoreham,
Washington, D.C March 27.
[28]. Schut G.H. (1976). Review
of Interpolation Methods for Digital
Terrain Models. The Canadian
Surveyor, Vol. 30. No. 5,
[29]. https://www.positioningsoluti
ons.com/Trimble/product_specs/580
0specs.pdf
[30]. Lambrou E. (2007) Accurate
height difference determination
using reflect or less total stations (in
Greek). Technika Chronika Sci J
Tech Chamber Greece 1-2:37-46
[31]. Lambrou E, Pantazis G.
(2007). A convenient method for
accurate height differences
determination. In: Proceedings of the
17th International Symposium on
Modern technologies, education and
professional practice in Geodesy and
related fields, Sofia, pp 45-53
[32]. http://www.toposurvey.ro/sec
undare/Leica/Leica_TPS1200+_Tec
hnicalData_en.pdf
[33]. http://surveyequipment.com/a
ssets/index/download/id/220/
[34]. Takos I. (1989). New
adjustment of the national geodetic
networks in Greece (in Greek). Bull
Hellenic Mil Geogr Serv
49(136):19-93.
[35]. Gianniou, M. (2009).
National Report of Greece to
EUREF 2009, EUREF 2009
Symposium, May 27-30 2009,
Florence, Italy.
[36]. Ekman M (1989) Impacts of
geodynamic phenomena on systems
for height and gravity. Bull Geod
63:281-296
[37]. Makinen J, Ihde J (2009).
The permanent tide in height
systems. IAG Symp Series, vol 133.
Springer, Berlin 81-87
[38]. Antonopoulos A. (1999)
Models of height systems of
reference and their applications to
the Hellenic area (in Greek). PhD
Thesis, School of Rural and
Surveying Engineering, National
Technical University of Athens,
Greece.
[39]. Holmes SA, Pavlis NK
(2006). A Fortran program for veryhigh
degree harmonic synthesis
(version 05/01/2006). Program
manual and software code available
at
[40]. http://earthinfo.nima.mil/GandG/wgs84/gravity
mod/egm2008/
[41]. Heiskanen W, Moritz H
(1967) Physical geodesy. WH
Freeman, San Francisco
[42]. Grigoriadis V.N , Kotsakis
C., Tziavos I.N. (2014). Estimation
of the Reference Geopotential Value
for the Local Vertical Datum of
Continental Greece Using EGM08
and GPS/Leveling Data, 35(1),
International Association of Geodesy
Symposia, pp. 88-89
[43]. Tocho C., Vergos G.S
(2015). Estimation of the
geopotential value W0, for the local
vertical datum of Argentina using
EGM2008 and GPS/levelling data
W0
LVD J Biomed Sci, 8 (5), pp. 395-
405
[44]. Amjadiparvar B., Rangelova
E., Sideris M.G. (2016). The GBVP
approach for vertical datum
unification: recent results in North
America J Geodesy, 90 (1), pp. 45-
63
[45]. Gerlach C., Rummel R.
(2013). Global height system
unification with GOCE: a simulation
study on the indirect bias term in the
GBVP approach J Geodesy, 87 (1),
pp. 57-67
[46]. Rummel R., Teunissen P.
(1988). Height datum definition,
height datum connection and the role
of the geodetic boundary value
problem J Geodesy, 62 (4), pp. 477-
498
[47]. Rangelova E., Sideris M.G,
Amjadiparvar B. et al (2015). Height
datum unification by means of the
GBVP approach using tide gauges
VIII Hotine-Marussi Symposium on
Mathematical Geodesy, 142,
Springer International Publishing,
pp. 121-129.
[48]. Kotsakis, C., Katsambalos,
K., Abatzidis D. (2012). Estimation
of the zero-height geopotential level
W0
LVD in a local vertical datum from
inversion of co-located GPS,
leveling and geoid heights: a case
study in the Hellenic islands,
J Geodesy, 86 (6), pp. 423-439