Title: RELATIONSHIP BETWEEN CURRENT DISCHARGE TO STATIC AND
DYNAMIC LEAD ACID BATTERY PERFORMANCE
Authors: Muhammad Ghufron, Yofinda E. Setiawan
, Masruroh, Istiroyah
, Cholisina A. Perwita
, M
Yusmawanto
, Nur Khairati
, Riky Dwi Susilo, A.A. Amirullah, Kurriawan Budi Pranata
|| ||
Muhammad Ghufron1,*, Yofinda E. Setiawan1
, Masruroh, Istiroyah1
, Cholisina A. Perwita1
, M
Yusmawanto1
, Nur Khairati1
, Riky Dwi Susilo, A.A. Amirullah, Kurriawan Budi Pranata2
1. Department of Physics, Faculty of Mathematic and Natural Science,
Brawijaya University, Jalan Veteran Malang, 65145, Indonesia 2.
Jurusan Pendidikan Fisika, Universitas Kanjuruhan Malang.
MLA 8 Ghufron, Muhammad, et al. "A STUDY ON CUSTOMER SATISFACTION TOWARDS HERO HONDA TWO WHEELER IN COIMBATORE CITY." IJETSI, vol. 3, no. 6, Dec. 2018, pp. 250-257, ijetsi.org/more2018.php?id=17. Accessed Dec. 2018.
APA Ghufron, M., Setiawan, Y., Istiroyah, M., Perwita, C., Yusmawanto, M., Khairati, N., Susilo, R., Amirullah, A., & Pranata, K. (2018, December). A STUDY ON CUSTOMER SATISFACTION TOWARDS HERO HONDA TWO WHEELER IN COIMBATORE CITY. IJETSI, 3(6), 250-257. Retrieved from ijetsi.org/more2018.php?id=17
Chicago Ghufron, Muhammad, Yofinda E. Setiawan, Masruroh, Istiroyah, Cholisina A. Perwita, M. Yusmawanto, Nur Khairati, Riky Dwi Susilo, A.A. Amirullah, and Kurriawan Budi Pranata. "A STUDY ON CUSTOMER SATISFACTION TOWARDS HERO HONDA TWO WHEELER IN COIMBATORE CITY." IJETSI 3, no. 6 (December 2018), 250-257. Accessed December, 2018. ijetsi.org/more2018.php?id=17.
References [1]. Enerdata Global Energy Statistical
Yearbook 2018. Available at:
https://yearbook.enerdata.net/.
[2]. BP Statistical Review of World
Energy June 2017. Available at:
https://www.bp.com/content/dam/bpcountry/de_ch/PDF/bp-statisticalreview-of-world-energy-2017-fullreport.pdf.
[3]. Krishna, M., E. J. Fraser, R. G.
A.Wills & F. C. Walsh. 2018.
Developments in Soluble Lead Flow
Batteries ad Remaining Challanges:
An Illustrated Review. Journal of
Energy Storage. 15. pp. 9-90.
[4]. Zeng, Y. K., T. S. Zhao, X. L. Zhou,
J. Zou & Y. X. Ren. 2017. A
Hydrogen-Ferric Ion Rebalance Cell
Operating at Low Hydrogen
Concentrations for Capacity
Restoration of Iron-Chromium
Redox Flow Batteries. Journal of
Power Sources. 352. pp. 77-82.
[5]. Leon, C. P., A. Frias-Ferrer, J.
Gonzalez-Garcia, D. A. Szanto & F.
C. Walsh. 2006. Redox Flow Cells
for Energy Conversion. Journal of
Power Source. 160. pp. 716-732.
[6]. Guney, M. S. & Y. Tepe. 2017.
Classification and Assessment of
Energy Storage Systems. Renewable
and Sustainable Energy Reviews. 75.
pp. 1187-1197.
[7]. T. Shigematsu. 2011. Redox Flow
Battery for Energy Storage. SEI
Technical Review. 7. pp. 4-13.
[8]. Weber, A. Z., M. M. Mench, J. P.
Meyers, P. N. Ross, J. T. Gostick &
Q. Liu. 2011. Redox Flow Batteries:
a Review. Journal of Applied
Electrochemistry. 41. pp. 1137-64.
[9]. Cheng, J., L. Zhang, Y. S. Yang, Y.
H. Wen, G. P. Cao & X. D. Wang.
2007. Preliminary Study of Single
Flow Zinc-Nickel Battery.
Electrochemistry Communications.
9. pp. 2639-2642.
[10]. Alotto, P., M. Guarnieri & F. Moro.
2014. Redox Flow Batteries for the
Storage of Renewable Energy: a
Review. Renewable and Sustainable
Energy Reviews. 29. pp. 325-335.
[11]. Cunha, A., J. Martins, N. Rodrigues
& F.P. Brito. 2014. Vanadium Redox
Flow Batteries: a Technology
Review. International Journal of
Energy Research. 39(7). pp. 889-
918.
[12]. Verde, M. G., K. J. Carroll, Z. Wang,
A. Sathrumb & Y. S. Meng. 2013.
Achieving High Efficiency and
Cyclability in Inexpensive Soluble
Lead Flow Batteries. Energy &
Environmental Science. 6. pp. 1573-
1581.
[13]. Zhang, C. P., S. M. Shark, X. Li, F.
C. Walsh, C. N. Zhang & J. C. Jiang.
2011. The Performance of a Soluble
Lead-Acid Flow Battery and Its Comparison to a Static Lead-Acid
Battery. Energy Conversion and
Management. 52. pp. 3391-3398.
[14]. Pranata, K.B., A. A. Amirullah, M.
P. T. Sulistyanto, Istiroyah & M.
Ghufron. 2018. Static and Dynamic
Characteristic Lead Acid Flow
Battery. The 8th Annual Basic
Science International Conference.
AIP Conf. Proc. 2021, 050007-1-
050007-7.
[15]. Ghufron, M., Kurriawan B. P.,
Istiroyah, M. Yusmawanto & C. A.
Perwita. 2018. Charging Time
Influence on Dynamic Lead Acid
Battery Capacity with H2SO4
Electrolyte. The 8th Annual Basic
Science International Conference.
AIP Conf. Proc. 2021, 050006-1-
050006-5
[16]. Sequeira, C. A. C. and M. R. Pedro.
2007. Lead-Acid Battery Storage.
Ciencia & Tecnologia dos Materiais.
19(1-2). pp. 59-65.
[17]. Treptow, R. S. 2002. The Lead-Acid
Battery: Its Voltage in Theory and in
Practice. Journal of Chemical
Education. 79 (3). pp. 334-338.
[18]. Luque, A. & S. Hegedus. 2011.
Handbook of Photovoltaic Science
and Engineering. Chichester : John
Wiley & Sons, Ltd.
[19]. Lai, Q., H. Zhang, X. Li, L. Zhang &
Y. Cheng. 2013. A Novel Single
Flow Zinc-Bromine Battery with
Improved Energy Density. Journal
of Power Source. 235. pp. 1-4.
[20]. Bindner, H., T.Cronin, P. Lundsager,
J. F. Manwell, U. Abdulwahid & I.
Baring-Gloud. 2005. Lifetime
Modelling of Lead Acid Batteries,
Contract. Available at:
http://130.226.56.153/rispubl/VEA/v
eapdf/ris-r-1515.pdf.
[21]. Oury, A., A. Kirchev, Y. Buitel & E.
Chainet. 2012. PbO2/Pb2+ Cycling
in Methanesulfonic Acid and
Mechanisms Associated for Soluble
Lead-Acid Flow Battery
Applications. Electrochimica Acta.
71. pp. 140-149.
[22]. Maya, G. J., A. Davidson, B.
Monahov. 2018. Lead Batteries for
Utility Energy Storage: a Review.
Journal of Energy Storage. 15. pp.
145-157.
Abstract: The performance of the battery depends on electrode material, electrolytes and input energy.
Current is an energy input during the process charging and discharging. In this study, a dynamic
lead acid battery is used with the features of Pb and PbO2 as the electrode, 30% H2SO4 as electrolyte
and constant current charging at 1.5 A for 4 hours. The dynamic battery was compared with
conventional lead acid battery and the effect of different discharge current at 0.5 A; 1.0 A; 1.5 A;
and 2.0 A on the dynamic battery was investigated. Comparison both type of battery showed that
the voltage of dynamic battery always lower than conventional battery before reaching 2.4 V during
charging process while the opposite result occurs during discharging process. The dynamic battery
with 1 A discharge current has the highest capacity. After 30 cycles charge-discharge test for single
cell battery has shown that the middle voltage of the battery decrease about 2% from 2.02 V to 1.99
V and still held the capacity of 3100 mAh.
The International Journal of Engineering Technology and Scientific Innovation Inviting Papers/Articles for Upcoming Issue Volume: 09, Issue: 05 "September-October 2024".
Submit your Paper through Online Submission System. Authors also can Send Paper to submit@ijetsi.org ....... Impact Factor for IJETSI is 2.512