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ABSTRACT 

The initial value problems with stiff ordinary differential equation systems occur in many fields 

of engineering, particularly in the studies of electrical circuits, vibrations, chemical reactions and 

also in many non-industrial areas like weather prediction. 

The aim of this study is to propose a one-step numerical scheme that can solve some of these 

problem of stiff ordinary differential equations. The derivation of the scheme is based on 

interpolating functions. 

The efficiency of the method is examined in terms of consistency, stability and convergence as 

well as construct the Region of Absolute Stability (RAS) of the scheme. 

Keywords: Consistence, convergence, region of absolute stability, stiff ordinary differential 

equations. 

1. INTRODUCTION 

Various fields of engineering and science include a special class of differential equations taken 

up in the initial valve problems termed as stiff differential equations result from the phenomena 

with widely differing time scales. A set of differential equations is ”stiff” when an excessively 

small step is needed to obtain correct integration. With stiff differential equations occuring in 

many fields such as engineering, biology, weather prediction, it is required to solve them 

efficiently. Almost all stiff differential equations can not be solved analytically, therefore 

requiring numerical procedure. Traditional methods such as Euler, explicit Runge-Kutta and 

others are restricted to a very small step size in order for the solution to be stable. This means 

that a great deal of computer time could be required. 
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Although over the years a number of methods have been developed for solving stiff ordinary 

differential equations [ [4],[9], [21],[22]] just to mention a few, most of these methods 

concentrated on the rigorous derivation of the method and not much on applying to solve typical 

problems. A new numerical scheme is proposed for solving some of these stiff ordinary 

differential equations. The method developed is applied to typical problems. The rest of the 

article is organized as follows: Section 2 deals with the development of the numerical scheme 

while consistency, convergence and stability of the scheme are developed in Section 3. In 

Section 4 numerical experiments on some test problems on the performance of the scheme with 

the exact solutions are discussed. 

2. DEVELOPMENT OF THE NEW NUMERICAL METHODS 

A numerical method for solving stiff initial value problem based on non-linear interpolating 

function was developed in this section. 

2.1. The Interpolating function. The mesh points are defined as interval [a,b] in the usual way, 

xn = a + nh,n = 0,1,2,..., and let yn represent the numerical estimate to the theoretical value y(xn) 

and fn represent f(xn,yn). Let us assume that the theoretical solution y(x) to the stiff initial value 

problem can be locally represented in the interval [xn,xn+1] by the interpolating function 

 (2.1) F(x) = a + bx + cx2 + dex3, 

where a, b, c, and d are constants. 

2.2. The Imposed Constraints. We shall make the following assumptions:- 

(i) that the interpolating function coincides with the theoretical solution at x = xn and x = xn+1, i.e., 

 (2.2) F(xn) = a + bxn + cx2
n + dex3n, 

and 

 2 x3n+1 

 (2.3) F(xn+1) = a + bxn+1 + cxn+1 + de , 

(ii) that the first, second, third and fourth derivatives with respect to x of the interpolating 

function coincide respectively with the differential equation as well as its first and second 

derivatives with respect to x at x = xn,i.e., 

 (2.4) F′(xn) = fn 
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 (2.5) F′′(xn) = fn′ 

 (2.6) F′′′(xn) = fn′′. 

This implies that 

x3n 2 

 (2.7) b + 2cxn + 3de x = fn 

 (2.8)  

 (2.9) . 

The system of equations in (2.7) to (2.9) is solved to obtain values of b, c, and 

d. We obtain 

 (2.10)  

 (2.11)  

 b = [(2 + 18x3
n + 9x6

n)fn + x − n(−(2 + 18x3
n + 9xn

6)fn
′ + xn(1 + 3xn

3)fn
′′] 

−1 

×3 6] 

2 + 18xn + 9xn 

(2.12) 

2.3. The Numerical Scheme. If we subtract equation (2.2) from (2.3), we obtain 

(2.13) yn+1 − yn = F(xn+1) − F(xn) 

(2.14) . 

If we now put xn = x0 +nh and xn+1 = x0 +(n+1)h, we can write our one-step method as 

(2.15) yn+1 − yn = b(h) + c(2x0h + h2 + 2hnh) + d(e(x0+nh+h)3 − e(x0+nh)3). 

[ 
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Substituting for b, c, and d in (2.15), we obtain 

 yn+1 − yn = [6h(2 + 18h3n3 + 9h6n6)fn + 3h2(2 + 18h3n3 + 9h6n6)fn1 

 − h3(1+3n+3n2) − 6 4 − 3 ] 

+( 2 + 2e 9h n 6h n(1 + n))fn2 3 3 6 6 ] 

−1 

(2.16) ×6(2 + 18h n + 9h n ) 

Equation (2.16) is the required one-step method. A general one-step 

method is given in the form 

(2.17) yn+1 = yn + hϕ(xn,yn;h), 

where ϕ(xn,yn;h) is called the incremental function of the method. Analysis of the incremental 

function is carried out to determine if the scheme is convergent and consistent. We now derive 

the incremental function of our scheme. A slight rearrangement of (2.16) and application of 

Taylor series expansion leads to 

(2.18) . 

Ignoring higher order terms in (2.18) and comparing the expression with (2.17) we obtain that 

(2.19) . 

3. ANALYSIS OF THE NEW SCHEME 

Every developed numerical scheme is supposed to meet certain standard requirements, and 

should ”compare well” with other known methods([11], [6],[7]). The central concepts commonly 

used in the analysis are: Convergence, Consistency, Order and Stability. 

3.1. Consistency and Order. Consistency and Order is easily shown via a principle of 

(Fatunla([19]), A numerical scheme with an incremental function ϕ(xn,yn;h) is said to be 

consistent with the initial value problem if 

 (3.1) ϕ(xn,yn;0) = f(xn,yn). 

This is easily shown to be the case for the incremental function (2.19). 

[ 



International Journal of Engineering Technology and Scientific Innovation 

ISSN: 2456-1851 

Volume: 04, Issue: 05 "September-October 2019" 

 

www.ijetsi.org Copyright © IJETSI 2019, All rights reserved Page 221 

 

3.2. Convergence and Stability. Similarly, convergence and stability of the constructed 

numerical scheme is easily established (Lambert([12])) 

3.3. Region of absolute stability (RAS). To obtain the region of absolute stability for the 

developed scheme, we apply the scheme (2.16) to the test problem (2.18). We proceed to 

determine fn,fn
′ ,f′′n and substitute in equation (2.16). Note that for (2.18) f(x,y) = λy, so that at the 

points x = xn, we have fn = λyn. By using the Mathematica package ([16]) we obtain the 

following: 

(3.2) f(xn) = λyn 

(3.3) f′(xn) = λ2yn 

(3.4) f′′(xn) = λ3yn 

(3.5) f′′′(xn) = λ4yn 

(3.6) , 

where 

 (3.7)  

with 

 (3.8) , 

which is the stability polynomial of the method. The region of absolute stability is the region (in 

the complex plane) defined by | 1 + R(z) |≤ 1 (for a rigorous definition of stability, see ([5]). 

Figure (1) shows the region of absolute stability for the scheme (2.16) obtained by using the 

Mathematica package ([16]). 

4. COMPUTER EXPERIMENTS AND RESULTS 

In this section the constructed numerical method, 

 (4.1) .,  
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is applied to a number of stiff initial value problems to illustrate the performance of the method. 

We benchmark its performance against the exact solution (where we have one). 

The implementation of the method is done using MATLAB ([2]) and Mathematica 5.0. 

For Examples 1 to 3 that are presented below, the solution found using (4.1) is compared with 

the exact solutions. Results are tabulated and corresponding graphs of solutions are given side by 

side. 

 

Figure 1: Region of absolute stability for the numerical scheme 

4.1. Example 1: y′ = −20(y −t2)+2t, y(0) = . The exact solution for the problem is 

. 

To find a numerical solution using (2.17), we firstly determine f′, and f′′ . We obtain 

 (4.2)  

The results are presented in Table 1 and Figure 2, comparing solutions from (4.1) - column ”new 

scheme”; and the exact solution - column ”Exact soln”, 
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Table 1: Table of results for Example 1. 

4.2. Example 2: y′ = −15(y − t−3), y(1) = 0. The exact solution to the problem is 

y(x) = −e−15t + e−3. 

 

Figure 2: Graph of results in Table 1 

Proceeding as we did in Example 1 above, we have that 

 (4.3)  

The results are presented in Table Table 2 and Figure 3. 

 

Table 2: Table of results for Example 2. 
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Figure 3: Graph of results in Table 2 

4.3. Example 3: y′ = −100(y − x3 + 3x2), y(0) = 0. The exact solution is 

y(x) = x3. 

We have 

 (4.4)  

The results for the solution of this stiff IVP are presented in Table 3 and Figure 4. 

 

Table 3: Table of results for Example 3. 

 

Figure 4: Graph of results in Table 3 
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5. CONCLUDING REMARKS 

In this study a numerical method have been developed for solving some stiff differential 

equations that arises from physical and engineering fields. In particular the consistency, the 

convergence was checked and determined the region of absolute stability of the method. 

Furthermore, the performance of the method was illustrated by applying it to three typical 

examples. The results of the method with that of the exact solution was illustrated in tables with 

their graphs. 

One could experiment with different types of functions to see what other possible numerical 

schemes could be derived. 
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